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Abstract

The Poisson-Boltzmann equation is an important tool in modeling solvent in biomolecular systems. In this
paper, we focus on numerical approximations to the electrostatic potential expressed in the regularized linear
Poisson-Boltzmann equation. We expose the flux directly through a first-order system form of the equation. Using
this formulation, we propose a system that yields a tractable least-squares finite element formulation and establish
theory to support this approach. The least-squares finite element approximation naturally provides ana posteriori
error estimator and we present numerical evidence in support of the method. The computational results highlight
optimality in the case of adaptive mesh refinement for a variety of molecular configurations. In particular, we
show promising performance for the Born ion, Fasciculin 1, methanol, and a dipole, which highlights robustness
of our approach.

Key words: Poisson-Boltzmann, implicit solvent, finite elements, least-squares, adaptive refinement
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1. Introduction

Solvent plays a critical role in determining the structure and function of biomolecular systems. However, the
explicit representation of solvent at a molecular level is often intractable due to the range of scales required. More-
over, properly modeling solvent interactions with molecules is computationally expensive due to the complexity
of the atomistic interactions that must be sampled over multiple configurations. As such, implicit solvent models,
such as the Poisson-Boltzmann model [1] and Generalized Born model [2], confront this difficulty by treating the
solvent as a bulk continuum.

The focus of this work is on numerical solutions to the Poisson-Boltzmann equation (PBE), which approxi-
mates the mean solvent forces by assuming the ions are distributed according to the Boltzmann distribution. This
results in a unique electrostatic potential described by this implicit solvent model [3]. In particular, we seek a
numerical solution of the linearization of the regularizedPBE (RPBE). The use of a regularized formulation [3],
is required because the original statement of the PBE yieldssingularities in the electrostatic potential. Regular-
ization overcomes this issue by analytically subtracting the singularities from the electrostatic potential yielding a
modified version of the original PDE. To further simplify theproblem, and focus on the efficacy of our discretiza-
tion, we linearize the RPBE. The linearized version has manyof the same challenges as the RPBE, however it
features reduced computation cost [4] while remaining a physically accurate perturbation to the fully nonlinear
problem [5].

A number of different directions for numerically solving the Poisson-Boltzmann equation have been pursued.
Approaches such as finite difference and finite volume methods [6–15], finite elements methods [3, 16–22], bound-
ary element methods [23–34], and integral equations [35, 36] have been developed for this problem. Yet, as the
complexity of applications increases so do the demands on the numerical approximation, and we are motivated to
investigate additional computational tools that provide amedium for more robust and efficient simulation.
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In this paper, we focus on a variational setting for the PBE due to the underlying theoretical support for
numerical methods and the established analysis of the equation. In particular, we propose a least-squares finite
element formulation of the linear regularized Poisson-Boltzmann equation. Least-squares finite element methods
offer a viable approach to efficient and accurate approximation. The least-squares method we follow begins by
reforming the partial differential equation as a first-order system. A functional is then constructed based on
the residual equations of the first-order system, and is minimized. A first-order system least-squares (FOSLS)
approach to finite elements has shown to be effective for numerous problems. In particular, elliptic problems [37,
38] with discontinuous coefficients [39–41] are theoretically competitive and numerically plausible.

The existing FOSLS theory motivates our treatment of the PBE, yet the theoretical properties for the FOSLS
form we pose in Section 3 are not fully developed. We establish these results and confirm the existence of a
unique solution for our problem. We propose a first-order system for the PBE in Section 3 that correctly addresses
the jump discontinuity inherent in the problem. The PBE is described through a dielectric coefficient,ǫ(x), and
Debye-Hückel parameter, ¯κ(x), that are discontinuous across an interface. Proper treatment of the flux term across
this interface is critical to the variational formulation.To this end, we propose a unique form of the flux that both
captures the underlying physics and yields a system amenable to a least-squares minimization.

The goal of this paper is to outline a least-squares finite element method for use with existing computational
tools, such as the Finite Element Toolkit (FETk) [42], whichuses piecewise linear elements over tetrahedral
tessellations of single domains. The result is a competitive and straightforward finite element method for the
PBE using adaptive mesh refinement. Adaptive refinement using finite elements has been studied for the Poisson-
Boltzmann equation in a Galerkin formulation [18, 19]. These approaches focus on resolution of the singularities
in the original PDE. Here, we use the functional provided by the least-squares formulation to guide refinement
with similar success. Treatment of the interface conditionis automatic in our formulation of the problem, naturally
capturing the physics around the interface while still being amenable to approximation by standard finite elements.

The remainder of the paper is organized as follows. In Section 2, we summarize the PBE, its regularization and
linearization, and the general problem domain. We outline the FOSLS terminology in Section 3 and introduce our
formulation of the method. Moreover, we establish theoretically the use our formulation and discuss implications
and techniques for computational simulation. In Section 4,we provide numerical evidence of effectiveness of
the FOSLS approach for a number of molecular systems. The method is shown to be effective for problems with
known solutions (Born ion), for more complicated structures (Fasciculin 1 and methanol), and for a problem with
low regularity (dipoles).

2. Poisson Boltzmann Equation

The Poisson-Boltzmann equation models the electrostatic activity between molecules in an ionic solvent. In
this model, it is assumed that the ions in the solvent are distributed according to the Boltzmann distribution and
that the potential of the mean force on a particle is simply the charge of the ion times the electrostatic potential.
This yields the general Poisson-Boltzmann equation [5],

−∇ · (ǫ(x)∇φ(x)) = 4πρf (x) + 4π
ns
∑

j=1

cs
jQ

s
jλ j(x) exp

[

−1
kBT

Qs
jφ(x)

]

, (1a)

lim
‖x‖→∞

φ(x) = 0. (1b)

Here,φ is the unknown electrostatic potential,ǫ is the dielectric coefficient,ρf is the fixed charge distribution in
the solute (biomolecule),kB is the Boltzmann constant, andT is the temperature. It is assumed that the solvent is
composed ofns species of ions, each with chargeQs

j and concentrationcs
j . The accessibility of thejth ion-species

to a point,x, in space is described byλ j(x).
For a solute in a 1:1 electrolyte solvent (e.g. NaCl), the charge of each ion species is±1 unit charge, and the

general Poisson-Boltzmann equation simplifies [1] to

−∇ · (ǫ(x)∇φ(x)) + κ̄2(x)

(

kBT
ec

)

sinh

(

ecφ(x)
kBT

)

= 4π
m

∑

i=1

Qiδ(x− xi), (2a)

lim
‖x‖→∞

φ(x) = 0. (2b)

Here, we have further assumed that solute contains a total ofmfixed point charges, with theith charge,Qi , centered
at positionxi . The resulting distribution,ρf , is a linear combination of Dirac delta functions,δ(x− xi).
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The domain for the problem,R3, is subdivided into a molecular region,Ωm, a solvent region,Ω∞s , and an
interface between the two, denoted byΓ. The solute is surrounded by solvent, which is represented as a continuum
over the subdomainΩ∞s = R

3\Ωm. In some Poisson-Boltzmann models, an additional ion exclusion or Stern layer
is present betweenΩs andΩm. The Stern layer provides separation between the solute andthe ions of the solvent.
As a result, the dielectric matches the dielectric in the solvent region and the ionic strength is zero (¯κ = 0). In
this paper we focus on the more challenging issue of the jump in the dielectric, and neglect the Stern layer. The
subdomains for a typical biomolecular solute are shown in Figure 1. The dielectric coefficient,ǫ(x), and modified

Γ

Interface
Solute

(Explicit Charges)

Ωs

Solvent

Ωm

_

__

_

_

_

_

_

_

_

+

+

+

+

+
+

+

+

+

+ +

+

_
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_

+

Ions

+

+ _

Figure 1: Subdomains for the Poisson-Boltzmann equation

Debye-Hückel parameter, ¯κ(x), describe the accessibility of the solvent to the solute and are defined onΩm ∪ Ω∞s
by the piecewise constant functions

ǫ(x) =















ǫm x ∈ Ωm

ǫs x ∈ Ω∞s
and κ̄2(x) =















0 x ∈ Ωm

κ̄2s = ǫs
8πNAe2

c
1000kBT Is x ∈ Ω∞s

. (3)

Here, ǫm and ǫs are positive constants,NA is Avogadro’s number, andec is the charge of a proton. The ionic
strength,IS, is a physical parameter which varies depending on the solvent.

For computational reasons, the unbounded solvent domain,Ω∞s , is typically truncated at a finite radius from
the “center” of the molecule, which gives rise to a bounded solvent domain,Ωs. Dirichlet boundary conditions
are imposed to capture the asymptotic behavior of the solution on an unbounded domain. Combining this with the
change of variables, ˜u(x) = ecφ(x)/kBT, results in a dimensionless Poisson-Boltzmann equation onthe spherical
domainΩ = Ωm ∪Ωs∪ Γ:

−∇ · (ǫ(x)∇ũ(x)) + κ̄2(x) sinhũ(x) =
4πec

kBT

m
∑

i=1

Qiδ(x− xi), x ∈ Ωm ∪Ωs, (4a)

ũ(x) = g(x), x ∈ ∂Ωs, (4b)
[[

ǫ(x)
∂ũ(x)
∂n

]]

Γ

= 0, x ∈ Γ. (4c)

where the jump at the interface is defined as
[[

ǫ(x)
∂ũ(x)
∂n

]]

Γ

= lim
α→0+
ǫ(x+ αn)

∂ũ(x+ αn)
∂n

− ǫ(x− αn)
∂ũ(x− αn)
∂n

,

with n as the unit normal to the interfaceΓ.
The boundary conditions are prescribed using a linear combination of Helmholtz Green’s functions,

g =
ec

kBT

m
∑

i=1

Qi

ǫs|x− xi |
exp

(

−κ̄s|x− xi |√
ǫs

)

. (5)
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In contrast to (2a), the principal equation is defined over each subdomain and an interface condition is introduced
on Γ. This restatement makes explicit the normal continuity implied by the strong form divergence ofǫ(x)∇φ
across the interfaceΓ in the original PBE.

We denote the standard Sobolev spaces asL2(Ω) andHk(Ω), for k ≥ 0. Hk(Ω) consists of functions overΩ
having square integrable (weak) derivatives of order up to k. The norms onL2(Ω) andHk(Ω) are expressed as
‖ · ‖0,Ω and‖ · ‖k,Ω, with theL2(Ω) inner product written (·, ·)0,Ω. In addition, we define the Hilbert spaces

H(div;Ω) := {q ∈ L2(Ω)3 : ∇ · q ∈ L2(Ω)},
H0(div;Ω) := {q ∈ H(div;Ω) : n · q = 0 on∂Ω},

H1
0(Ω) := {u ∈ H1(Ω) : u = 0 on∂Ω},

with norms

‖q‖2div,Ω =‖q‖20,Ω + ‖∇ · q‖20,Ω, (6)

‖u‖21,Ω =‖u‖20,Ω + ‖∇u‖20,Ω. (7)

One difficulty with (2a) is regularity. The right-hand side 4π
∑

i Qiδ(x− xi) is not inH−1(Ω), i.e., the dual space
of H1

0(Ω). Practically, the right-hand side induces singularitiesin ũ at the solute atom centersxi . These singular-
ities are the familiar consequence of solute-solute electrostatic interactions satisfying Coulomb’s law. However,
finite element and finite difference methods often require more smoothness in order to guarantee convergence.
Following [3], we overcome this issue by decomposing ˜u into

ũ = u+ uc, (8)

whereu is an unknown smooth function anduc is a known singular function. The Coulomb function,uc, satisfies
the Poisson equation

−ǫm∇ · ∇uc(x) =
4πec

kBT

m
∑

i=1

Qiδ(x− xi), (9)

and absorbs the singularities in ˜u. Combining (8) with (4), we obtain the regularized PBE or RPBE

−∇ · ǫ(x)∇u(x) + κ̄2(x) sinh (u(x) + uc(x)) = ∇ · (ǫ(x) − ǫm)∇uc(x), x ∈ Ωs∪Ωm,

u(x) = g(x) − uc(x), x ∈ ∂Ω, (10)
[[

ǫ(x)
∂u(x)
∂n

]]

Γ

= (ǫm − ǫs)
∂uc(x)
∂n
, x ∈ Γ.

Sinceκ̄(x) andǫ(x)−ǫm are zero insideΩm, we avoid evaluating the Coulomb potential,uc, near the singularities
present at each point charge,xi ∈ Ωm. This yields a right-hand side in (10) that is a well-defined distribution in
H−1(Ω) and, as a result, equation (10) is a well-defined nonlinear second-order elliptic equation with a unique
weak solutionu in H1(Ω) [3].

A simplified version of (10) is the linear regularized Poisson-Boltzmann equation, which is obtained by lin-
earizing the hyperbolic sine:

−∇ · ǫ(x)∇u(x) + κ̄2(x)u(x) = ∇ · (ǫ(x) − ǫm)∇uc(x) − κ̄2(x)uc(x), x ∈ Ωs∪ Ωm, (11a)

u(x) = g(x) − uc(x), x ∈ ∂Ω, (11b)
[[

ǫ(x)
∂u(x)
∂n

]]

Γ

= (ǫm − ǫs)
∂uc(x)
∂n
, x ∈ Γ. (11c)

Physically, the linearization reduces the ionic response of the solvent to the solute. This approximation is accept-
able unless the solute is highly charged [4]. In this case themagnitude of the electrostatic potential is large, and
the approximation sinh(u) ≈ u is not accurate [1].

3. FOSLS Formulation of PBE

The First-Order System Least Squares (FOSLS) finite elementmethod is an alternative to standard and mixed
Galerkin finite element methods [43]. FOSLS begins by converting the PDE to a first order system. Using the new
set of equations, a functional is then defined whose minimizer solves the original PDE.

4
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FOSLS offers a number of potential advantages over traditional methods. The functional is minimized using
a variational principle, giving rise to a symmetric bilinear form. A discretization based on this form leads to a
symmetric positive-definite linear system, which is ideal for solvers such as preconditioned conjugate gradient.
Also, the bilinear form is often elliptic with respect to a practical norm, and as a result the finite element spaces do
not need to satisfy the discrete inf-sup condition of Ladyzhenskaya-Babuŝka-Brezzi [44], unlike mixed methods.
A practical consequence is that basic finite element spaces,e.g. continuous piecewise linear polynomials, may be
used for all variables.

The FOSLS functional also provides a locala posteriorierror estimate. Such estimates are complicated for
other methods, but the FOSLS residual norm provides a straightforward and accurate estimate for our problem.
This local error estimate is used for adaptively refining a mesh in our numerical experiments and we highlight the
effectiveness of this tool.

Least-Squares finite element methods are not without limitation, however. The introduction of new variables
to formulate the first-order system ultimately increases the degrees of freedom and complexity in computing the
solution. This is not necessarily a disadvantage as the new variables are often physically meaningful and are often
needed elsewhere in the simulation. For example, the FOSLS formulation of the PBE introduces a secondary
“flux” variable, which is used to effectively compute potential of the mean force required in thesolution of the
Steady-State Smoluchowski Equation [45]. Another potential drawback is that FOSLS requires more regularity
than might be present in the problem to ensure optimal error estimates. Optimal error estimates using a Least-
Squares approach for PBE can be derived through a multi-domain approach for such problems [46]. In this
paper, we also use adaptive refinement to overcome these issues of computational complexity, yielding optimal
convergence rates in our numerical experiments.

A typical approach to forming a first-order system of (11) over a single domainΩ is to introduce a flux,
q̃ = ǫ(x)∇u (e.g., see [39]). The resulting first-order system is

q̃ − ǫ∇u = 0 inΩ, (12a)

−∇ · q̃ + κ̄2u = ∇ · (ǫ(x) − ǫm)∇uc − κ̄2uc in Ω, (12b)

u = g− uc on∂Ω. (12c)

An application of Green’s theorem on this system shows that across any surface inΩ with normaln, n · q̃ is
continuous. In particular, solution to system (12) satisfies,

[[

q̃ · n
]]

Γ

= 0 x ∈ Γ.

However, sincẽq = ǫ∇u, equation (11c) implies,
[[

q̃ · n
]]

Γ

= (ǫm− ǫs)∇uc(x) · n x ∈ Γ.

This impliesq̃ ·n is not continuous across the interfaceΓ, and hence, a least squares approach based on system (12)
is an incorrect formulation for solving the RPBE.

For a well-posed FOSLS formulation to system (11), we need todefine a first-order variableq, whose normal
component is not only continuous across the interface, but also satisfies the interface condition required by RPBE.
To ensure these conditions, we defineq = ǫ(x)∇u+ (ǫ(x) − ǫm)∇uc, which results in,

q/ǫ(x) − ∇u = ((ǫ(x) − ǫm)/ǫ(x))∇uc in Ω, (13a)

−∇ · q + κ̄2u = −κ̄2uc in Ω, (13b)

u = g− uc on∂Ω, (13c)

n × q = n × (ǫs∇g+ (ǫ(x) − ǫm)∇uc) on∂Ω. (13d)

Now equations (11c) and (13) imply,
[[

q · n
]]

Γ

= 0 x ∈ Γ.

We now pose our problem in abstract form and establish a unique solution. To simplify the analysis we consider
homogeneous Dirichlet boundary conditions. Using a standard lifting argument, we obtain

q/ǫ(x) − ∇u = ((ǫ(x) − ǫm)/ǫ(x))∇uc in Ω,

−∇ · q + κ̄2u = −κ̄2uc, in Ω, (14)

u = 0 on∂Ω,

n × q = 0 on∂Ω.

5
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The least-squares functional based on (13) is as follows. For q ∈ H0(div;Ω) andu ∈ H1
0(Ω), we define

G(q, u; uc) = ‖q/ǫ(x) − ∇u− ((ǫ(x) − ǫm)/ǫ(x))∇uc‖20,Ω + ‖ − ∇ · q + κ̄
2u+ κ̄2uc‖20,Ω. (15)

The solution of (13) solves the minimization problem

G(q, u; uc) = min
(r,v)∈H0(div;Ω)×H1

0(Ω)
G(r, v; uc) (16)

and leads to the variational problem
F (q, u; r, v) = ℓ(r, v), (17)

where the bilinear formF and linear functionalℓ are

F (q, u; r, v) = (q/ǫ − ∇u, r/ǫ − ∇v)0,Ω + (−∇ · q + κ̄2u,−∇ · r + κ̄2v)0,Ω, (18)

ℓ(r, v) = −(κ̄2uc,−∇ · r + κ̄2v)0,Ω + (((ǫ − ǫm)/ǫ)∇uc, r/ǫ − ∇v)0,Ω. (19)

3.1. Ellipticity of FOSLS functional

To show the variational problem (17) is well-posed, it is sufficient to prove thatG(q, u; 0)
1
2 defines a norm

equivalent to theH(div)×H1 norm (Theorem 1). This result also ensures that our finite element solution is the best
approximation to the true solution under the norm defined byG(q, u; 0). Before proving this norm equivalence,
we start by stating and proving a lemma, which will be used in the proof of Theorem 1.

Lemma 1. Let h(x) and k(x) be two positive bounded functions onΩ, i.e. 0 < c1 < h(x) < c2 and0 < c1 < k(x) <
c2 for all x ∈ Ω, where c1 and c2 are constants. Then there exists positive constantsα1 andα2 such that

α1F̂ (q, u; q, u) ≤ F (q, u; q, u) ≤ α2F̂ (q, u; q, u), (20)

where the bilinear formF̂ is defined as

F̂ (q, u; r, v) = (
√

h(q/ǫ − ∇u),
√

h(r/ǫ − ∇v))0,Ω + (
√

k(−∇ · q + κ̄2u),
√

k(−∇ · r + κ̄2v))0,Ω. (21)

Proof of Lemma 1.Takingα1 = c−1
2 andα2 = c−1

1 gives the desired result.

Theorem 1. The bilinear formF defines a norm equivalent to the H(div)×H1 norm. That is, there exists positive
constantsγ1 andγ2 such that

F (q, u; r, v) ≤ γ1(‖q‖2H(div) + ‖u‖21,Ω)1/2(‖r‖2H(div) + ‖v‖21,Ω)1/2 (22)

and
F (q, u; q, u) ≥ γ2(‖q‖2H(div) + ‖u‖21,Ω). (23)

Proof. A proof for the general case is given in [37]. Here we offer a proof for our specific case, to obtain sharper
constants of ellipticity; our proof is in the same spirit as aproof presented in [39].

First we prove boundedness ofF (equation (22)). An application of Cauchy-Bunyakovsky-Schwarz inequality
to (18) leads to

F (q, u; r, v) ≤ (F (q, u; q, u))1/2(F (r, v; r, v))1/2. (24)

Using the fact thatǫ is bounded away from zero inΩ yields

F (q, u; q, u) = ‖q/ǫ − ∇u‖20,Ω + ‖ − ∇ · q + κ̄
2u‖20,Ω

≤ γ3(‖q‖20,Ω + ‖∇u‖20,Ω + ‖∇ · q‖20,Ω + ‖u‖20,Ω)

= γ3(‖q‖2H(div) + ‖u‖
2
1,Ω), (25)

whereγ3 = max(2, 2κ̄4, 2ǫ−2) = max(2, 2κ̄4s, 2ǫ
−2
m , 2ǫ

−2
s ). Combining equations (25) and (24) proves boundedness

of F .
To prove coercivity, we consider a modified bilinear form, asdefined by (21). We defineh(x) andk(x) as:

h(x) =















ǫ(x) x ∈ Ωm

τǫ(x) x ∈ Ωs
and k(x) =















1 x ∈ Ωm

τ/κ̄2s x ∈ Ωs,
(26)
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whereτ is a constant such that 0< τ < 1.
We can decompose the integral overΩ and evaluateF overΩs andΩm,

F̂ (q, u; q, u) = F̂ (q, u; q, u)|Ωs + F̂ (q, u; q, u)|Ωm (27)

where
F̂ (q, u; q, u)|Ωs = ‖

√
τq/
√
ǫ −
√
τ
√
ǫ∇u‖20,Ωs

+ ‖ −
√
τ/κ̄s∇ · q +

√
τκ̄su‖20,Ωs

(28)

and
F̂ (q, u; q, u)|Ωm = ‖q/

√
ǫ −
√
ǫ∇u‖20,Ωm

+ ‖∇ · q‖20,Ωm
. (29)

Integration by parts shows that
∫

Ωm

∇ · qu+
∫

Ωm

q · ∇u−
∫

Γ

uq · nm = 0, (30)

wherenm is the unit normal atΓ, pointing from the solute region into the solvent region. Applying this result
to (29), we obtain

F̂ (q, u; q, u)|Ωm = ‖q/
√
ǫ‖20,Ωm

+ ‖
√
ǫ∇u‖20,Ωm

− 2
∫

Ωm

q · ∇u+ ‖∇ · q‖20,Ωm
+ 2τ

∫

Ωm

∇ · qu

+ 2τ
∫

Ωm

q · ∇u− 2τ
∫

Γ

uq · nm+ τ
2‖u‖20,Ωm

− τ2‖u‖20,Ωm

= ‖q/
√
ǫ + (τ − 1)

√
ǫ∇u‖20,Ωm

+ ‖∇ · q + τu‖20,Ωm
− τ2‖u‖20,Ωm

+ (2τ − τ2)‖
√
ǫ∇u‖20,Ωm

− 2τ
∫

Γ

uq · nm. (31)

Similarly, using integration by parts on equation (28) yields

F̂ (q, u; q, u)|Ωs = ‖
√
τq/
√
ǫ‖20,Ωs

+ ‖
√
τ
√
ǫ∇u‖20,Ωs

− 2τ
∫

Ωs

q · ∇u+ ‖
√
τ∇ · q/κ̄s‖20,Ωs

+ ‖
√
τκ̄su‖20,Ωs

− 2τ
∫

Ωs

∇ · qu

= ‖
√

(τ/κ̄s)∇ · q‖20,Ωs
+ ‖
√
τq/
√
ǫ‖20,Ωs

+ ‖
√
τ
√
ǫ∇u‖20,Ωs

+ ‖
√
τκ̄su‖20,Ωs

− 2τ
∫

Γ

uq · ns, (32)

wherens = −nm is the unit normal alongΓ, pointing from the solvent domain into the solute.
Using the Poincaré-Friedrichs inequality, we can assume

‖u‖20,Ω ≤ λ‖∇u‖20,Ω, with λ > 1. (33)

From equations (27), (31), (32), (33) and choosingτ = 1
2λ < 1 we have

F̂ (q, u; q, u) = ‖
√
τq/
√
ǫ‖20,Ωs

+ ‖
√
τ
√
ǫ∇u‖20,Ωs

+ ‖
√
τ∇ · q/κ̄s‖20,Ωs

+ ‖
√
τκ̄su‖20,Ωs

+ ‖q/
√
ǫ + (τ − 1)

√
ǫ∇u‖20,Ωm

+ ‖∇ · q + τu‖20,Ωm
− τ2‖u‖20,Ωm

+ (2τ − τ2)‖
√
ǫ∇u‖20,Ωm

≥ ‖
√
τ
√
ǫ∇u‖20,Ωs

+ (2τ − τ2)‖
√
ǫ∇u‖20,Ωm

− τ2‖u‖20,Ωm

≥ τ‖
√
ǫ∇u‖20,Ω − τ2‖u‖20,Ω ≥ (τ − λτ2)‖

√
ǫ∇u‖20,Ω

=
1
4λ
‖
√
ǫ∇u‖20,Ω ≥ α3‖∇u‖20,Ω, (34)

whereα3 =
1
4λ min(ǫm, ǫs).

Now from equation (20), we get
F (q, u; q, u) ≥ α4‖∇u‖20,Ω, (35)

whereα4 = α1α3. From the Poincaré-Friedrichs inequality (33), we find

F (q, u; q, u) ≥ α5‖u‖20,Ω. (36)

Moreover,

‖q/ǫ‖20,Ω ≤ 2(‖q/ǫ − ∇u‖20,Ω + ‖∇u‖20,Ω) ≤ 2

(

1+
1
α4

)

F (q, u; q, u),
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and henceF (q, u; q, u) ≥ α6‖q‖20,Ω for α6 = α4 [2 (1+ α4) max(ǫs, ǫm)]−1. Similarly,

‖∇ · q‖20,Ω ≤ 2(‖∇ · q − κ̄2u‖20,Ω + ‖κ̄
2u‖20,Ω) ≤ 2(1+ κ̄4sα5)F (q, u; q, u), (37)

and thusF (q, u; q, u) ≥ α7‖∇ · q‖20,Ω for α7 =
[

2(1+ κ̄4sα5)
]−1

.
Takingγ2 = min(α4, α5, α6, α7) completes the proof.

The FOSLS functional (15) isH(div) × H1 equivalent. In some FOSLS formulations, a curl term of the form
∇ × (q/ǫ) = 0 is added to problem formulation (e.g., [39]), yielding aH1 × H(div) ∩ H(curl) equivalent FOSLS
functional. The extra constraint is motivated byq̃ = ǫ∇u, which implies∇ × q̃/ǫ = 0 (c.f., [47], Theorem 2.9).
However, for our case, we cannot take the curl ofq/ǫ. This follows from our definition ofq = ǫ∇u+ (ǫ − ǫm)∇uc;
the curl ofq/ǫ is undefined at the interface. Hence we do not add the curl termto the formulation.

Traditionally, developing an effective error estimator for use in local adaptive refinement is challenging. Error
estimators based on the Galerkin method are not immediatelyobvious from the problem formulation and local
error bounds for the PBE can be complicated to derive [3]. In contrast, the FOSLS framework directly provides a
natural error indicator through the functional. The local value of FOSLS functional is ana posteriorilower error
bound, and, under some restrictions on mesh refinement, the bound can be shown to be a sharp theoretical error
estimate [48]. We exploit this fact and build an adaptive refinement scheme based on the value of the FOSLS
functional.

Let Gτ(q, u; uc) be the value of the FOSLS functional (15) restricted to elementτ. Note that ifS is the set of
elements comprising the mesh, then

G(q, u; uc) =
∑

τ∈S
Gτ(q, u; uc).

Let µτ =
√

Gτ(q, u; uc) andµmax= max
τ∈S
µτ. We mark simplexτ for refinement ifµτ ≥ γµmax whereγ ∈ (0, 1).

Our strategy is relatively straightforward, yet more advanced marking strategies based on the “solvation free-
energy” [49] and FOSLS [48, 50] functionals have been proposed in the literature. However, in our numerical
experiments, we did not find a significant difference in performance when the marking strategy is varied for
our problem. When compared on the same mesh, FOSLS requires more memory and CPU time than the standard
second-order Galerkin method. However, the meshes produced by the corresponding adaptive refinement schemes
are different, and the FOSLS approach is often able to achieve a more accurate solution with less refinement.
As a result, the FOSLS approach is often more efficient than a standard second-order Galerkin method. The
effectiveness of our scheme is highlighted in Section 4.

4. Numerical Experiments

We use a tetrahedral mesh ofΩ with globally continuous piecewise linear finite functions(P1 elements) and
implement our finite element method and mesh refinement in FETK [42]. The meshes are generated using the
Geometry-preserving Adaptive Mesher (GAMer), which is designed to produce simplicial meshes of molecular
volumes and interfaces [51]. As a result, the solvent domainhas a spherical outer boundary and the mesh is
conforming at the interface of the solvent and molecule regions. For the first four numerical experiments, we
chooseǫm = 1, ǫs = 78, and ¯κs = 0.918168, which corresponds to a typical ionic strength of 0.1M. In these
experiments, we solve for the regularized potential and strongly impose boundary conditions. The experiments
are performed on the Born ion, Fasciculin 1, methanol, and a simple dipole. Letqh anduh be our finite-element
solution, andq andu the true solution. We verify convergence to the solution by monitoring the square-root
of FOSLS functional,G(qh, uh; uc)

1
2 , since the FOSLS functional measures the error in the norm induced byG:

G(qh, uh; uc)
1
2 = G(qh−q, uh−u; 0)

1
2 . Therefore convergence of the FOSLS functional to zero implies convergence

of our finite element solution to the true solution. We use uniform octal refinement and adaptive refinement to
test the effectiveness of your method, with adaptive refinement being carried out by longest edge bisection. Since
G(., ., 0)

1
2 is equivalent toH(div)×H1 norm, a standard finite-element error estimate implies optimal convergence

rate to beO(h) using uniform refinement with piecewise linear basis functions [37]. This optimal estimate assumes
the problem to beH2 regular. The convergence rate degrades as the solution becomes less smooth. We examine this
scenario (dipole), and show that we still recover optimal convergence using adaptive refinement. In the following
results, we refer toG(qh, uh; uc)

1
2 as the FOSLS norm and plot convergence rates normalized by the largest value.

Finally, to validate the solutions generated by our implementation, we compute the solvation free energy of
transcription factor PML (PDB code 1BOR). We compare the computed value with values found in the literature.
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R

Ωs

Q1

Ωm

+

(a) Domain (b) Convergence

Figure 2: Born Ion

Born Ion

Due to the complex geometries associated with molecules there are few analytical solutions to the PBE or
linearized PBE; however, it is possible to find an expressionfor the potential of a spherical ion in a solvent [52].
This system is referred to as the Born ion after its author MaxBorn [53]. The domain is consists of a spherical
solute of radiusR with a single point chargeQ1 at its center. The solute is surrounded by an unbounded solvent,
Ωs, as depicted in Figure 2a.

Writing the linear regularized PBE in spherical coordinates yields

− 1
r2

d
dr

(

ǫ(r)r2 d
dr

u(r)

)

+ κ̄2(r)u(r) = −κ̄2(r)uc(r), r , R,

[[

ǫ(r)
d
dr

u(r)
]]

Γ

= (ǫm− ǫs)
d
dr

uc(r), r = R

u(∞) = 0

whereω = κ̄s/
√
ǫs. Following [52], we obtain the analytic solution

u(r) =















C1 exp [−ω(r − R)] /r −C2/r, R≤ r,

(C1 −C2)/R, 0 ≤ r < R,

where

C1 =
ecQ1

kBT
1

(1+ ωR)ǫs
, and C2 =

ecQ1

kBT
1
ǫm
.

Figure 3a displays the convergence of the reaction potential u in theL2 norm, where the normalizedL2 error
is plotted as a function ofN, the number of points in the mesh. In three-dimensions, we observe a convergence
rate of nearlyO(h2) for uniform refinement, which corresponds toO(N−2/3). On the other hand, for adaptive
refinement, we observe a slightly better convergence rate. Figure 3b displays the FOSLS functional residual as
the mesh is refined. In three-dimensions, a convergence rateof O(h) corresponds toO(N−1/3). We see that the
FOSLS functional decreases nearly linear inh. During refinement, we ensure that new points on the solute/solvent
interface lie on the analytically determined spherical boundary of the interface. As an example of convergence, in
Figure 2b we display a slice of the true solution, a numericalsolution on the initial mesh, and numerical solutions
after two successive steps of uniform mesh refinement.

Fasciculin 1

The Born ion is a useful test case as the analytical solution is known; however, it is not a realistic simulation.
To study the effectiveness of the FOSLS formulation on a realistic protein,we compute the regularized potential
of Fasciculin 1 (1FAS in the Protein Data Bank) in an implicitsolvent. 1FAS is a neurotoxin found in green
mamba venom [54]. The dynamics and electrostatics of the Fasciculin 2 variant of this protein in its role as
an acetylcholinesterase inhibitor have been studied in [55] and [56], where the electrostatics are argued to be
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(b) FOSLS Functional

Figure 3: Convergence Rates of Born Ion

Figure 4: Fasciculin 1

(a) Initial Mesh (b) Refined Mesh

Figure 5: Adaptive refinement around the solute/solvent interface of Fasciculin 1
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important to its function. In our experiments we use the description of the molecule specified in the PDB file
from the Protein Data Bank and strip off water molecules using VMD [57]. The molecule region is not perfectly
spherical, and we do not expect the solution to be symmetric as we did in the case of Born ion. It is assumed that
the initial mesh defines the solute and solvent regions so that the solute/solvent interface in this case is polygonal
and defined by the initial mesh. Consequently, refinement adds points to the polygonal interface. While the
analytical solution for Fasciculin 1 is not known, we are able to monitor the convergence of FOSLS functional.

Figure 4 shows the normalized convergence rate of FOSLS functional. Both uniform and adaptive refinement
perform well: the convergence rate is better thanO(h) for both cases. Figure 5 depicts adaptive refinement around
the Fasciculin molecule. The adaptive scheme refines aggressively around the areas where the solution is changing
sharply.

(a) Molecular Model (b) Convergence

Figure 6: Methanol

(a) Initial Mesh (b) Refined Mesh

Figure 7: Adaptive refinement around the solute/solvent interface of methanol

Methanol

We examine our method in the more challenging setting of a methanol molecule, obtained from the APBS
software package [11]. The model consists of three charged spheres representing charge groups: CH3 and H with
positive charges of 0.27 and 0.43 respectively, and an O atomwith a negative charge of 0.7. The net charge on the
molecule is zero. Figure 6a displays the methanol molecule.
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We assume again that the initial mesh properly defines the solute and solvent regions. Figure 6b displays the
FOSLS functional as a function of the number of vertices in the mesh. We see from the plot that the FOSLS func-
tional does decrease, but the convergence is slightly less thanO(h). On the other hand, adaptive refinement is ideal
for this problem since the solution varies sharply across the interface, indicating areas where local refinement is
useful. As Figure 6b shows, adaptive refinement yields slightly better thanO(h) convergence. The performance of
adaptive refinement is shown in Figures 7 and 8, where the regularized electrostatic potential around the interface
is displayed. Figure 7 shows the initial mesh and an adaptively refined mesh. Figure 8 displays a slice of the
regularized solution, which highlights the areas in which the solution changes rapidly and also that the solution is
not symmetric.

Figure 8: Methanol: Solution around the interface

Ωs

Q1 Q2

Ωm

+ -

d

Figure 9: Domain for a simple dipole.

Dipole

In this section we illustrate the performance of our scheme on a simple dipole, as depicted in Figure 9. The
linearized PBE for ions inside a spherical molecular regionhas been studied in [58]. For our experiment the
domain consists of a spherical molecular region of radius 2 units, with two equal, but opposite unit charges,q+

andq−, inside. The charges are placed on opposite sides of the x-axis, each at distanced from the origin (see
Figure 9). Asd is increased, the charges move closer to the interface, the solution becomes less well-behaved,
developing a sharp gradient at the interface. Uniform refinement does not efficiently resolve the solution in this
scenario. However, adaptive refinement is able to refine locally around the simplices at the interface, and gives
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Figure 10: FOSLS functional convergence rates for a simple dipole

a significantly better convergence rate than uniform refinement as shown in Figure 10. In particular, the rate of
convergence for adaptive refinement is nearly insensitive to changes in the parameterd.

1BOR

Finally, we compute the electrostatic solvation free energy of transcription factor PML (PDB code 1BOR),
and compare our value with the results in [59], where they chooseǫm = 1, ǫs = 80. The electrostatic free energy
of solvation is defined by [59]

△Gsol =
1
2

ns
∑

j=1

Q j(φ(x j) − φhomo(x j)), (38)

whereφhomo is the solution of equation 2a in homogenous enironment, thats is ǫm = ǫs = 1. In terms of the
regularized potentialu, the solvation free energy can be computed as,

△Gsol =
1
2

kBT
ec

ns
∑

j=1

Q ju(x j) (39)

On a mesh with 131086 vertices, we compute the free energy of solvation equal to -792.577 kcal/mol, which
compares well with the value of -853.7 kcal/mol computed from the MIBPB-III method in [59]. The free energy
of solvation is sensitive to the geometry of the protein surface. We use GAMer to define this interface geometry,
and hence our result does not exactly match up with [59], who use MSMS [60] to generate their protein surface.

5. Conclusion

The interface jump condition in (11) presents a challenge todesign a single-domain FOSLS approach. We
overcome this difficulty with a choice of a vector parameterq that results in a consistent and well-posed first-order
system. The approach is also useful for solving the non-linear equation using a Newton-FOSLS method [61], as
each step of Newton’s method will effectively involve solution of a linearized Poisson-Boltzmann equation. In
this paper we show that the resulting FOSLS functional defines a norm equivalent to the norm onH1×H(div), yet
can be used in an existing finite element framework that uses more standard piecewise continuous elements inH1.

We offer numerical evidence in support of this approach and test the methodology on several problems. We
observe that adaptive refinement based on the FOSLS functional scheme yields a faster convergence rate than
uniform refinement, and that this effect is more pronounced for solutions that are more sharply varying.
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